Towards Knowledge Uncertainty Estimation for Open Set Recognition
نویسندگان
چکیده
منابع مشابه
Towards Open-Set Identity Preserving Face Synthesis
We propose a framework based on Generative Adversarial Networks to disentangle the identity and attributes of faces, such that we can conveniently recombine different identities and attributes for identity preserving face synthesis in open domains. Previous identity preserving face synthesis processes are largely confined to synthesizing faces with known identities that are already in the train...
متن کاملKnowledge-oriented semantics modelling towards uncertainty reasoning
Distributed reasoning in M2M leverages the expressive power of ontology to enable semantic interoperability between heterogeneous systems of connected devices. Ontology, however, lacks the built-in, principled support to effectively handle the uncertainty inherent in M2M application domains. Thus, efficient reasoning can be achieved by integrating the inferential reasoning power of probabilisti...
متن کاملTowards Open Set Deep Networks: Supplemental
In this supplement, we provide we provide additional material to further the reader as understanding of the work on Open Set Deep Networks, Mean Activation Vectors, Open Set Recognition and OpenMax algorithm. We present additional experiments on ILSVRC 2012 dataset. First we present experiments to illustrate performance of OpenMax for various parameters of EVT calibration (Alg. 1, main paper) f...
متن کاملLearning a Neural-network-based Representation for Open Set Recognition
Open set recognition problems exist in many domains. For example in security, new malware classes emerge regularly; therefore malware classication systems need to identify instances from unknown classes in addition to discriminating between known classes. In this paper we present a neural network based representation for addressing the open set recognition problem. In this representation insta...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning and Knowledge Extraction
سال: 2020
ISSN: 2504-4990
DOI: 10.3390/make2040028